Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38613758

RESUMO

Despite policies to restrict the mixing of organic waste with other general waste and improve its separation at source, municipal solid waste still contains a high proportion of organic waste. The residual organic waste is generated as a by-product of the mechanical treatment of municipal solid waste (MSW) and is mainly disposed in landfills after composting. Its reuse and recovery status varies across European countries. Most countries restrict the use of biostabilised residual waste (BSRW) to landfill cover, whereas others have regulated it as marketable compost. Crucially, BSRW is set to lose its "recycled" status under the revised European Union waste framework, with probably tighter restrictions and increased costs imposed for the landfilling of organic waste. Our research aimed to investigate pyrolysis as an alternative technology to treat the 10-40 mm fraction of BSRW (representing 50% of BSRW generated). Pyrolysis at 700 °C was carried out and feedstock and pyrolysis products were characterized. Mass and energy balances showed that pyrolysis produced hot vapour/gas whose combustion may render the pyrolysis process energetically sustainable. Biochar comprises 30-50% of BRSW mass after removal of glass, metal and stones. Our results indicate that pyrolysis has the potential to create options for contributing to reduce the landfilling of BSRW; however, the presence of residual impurities may limit biochar applications.

2.
Environ Monit Assess ; 196(5): 450, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613635

RESUMO

Unscientific dumping of municipal solid waste (MSW) is a common practice in Kashmir. To have an environmentally friendly and sustainable waste management system, MSW was collected from nine study locations of this region. They were air-dried, then oven-dried at 105 °C for 24 h, segregated, and characterized for various components. The overall average organic waste was > 55%, plastic waste about 17%, inert material about 10%, paper 9%, and cloth waste 7%. The calorific value of paper and plastic wastes exhibited was 4910 kcal/kg, while organic waste had a calorific value of 1980 kcal/kg. The proximate analysis showed that the moisture content ranged from 16 to 29%, volatile matter ranged from 49 to 72%, ash content ranged from 0.03 to 5%, and fixed carbon ranged from 5 to 20%. In S7, the volatile matter content recorded the lowest value at 49.15%, while in S5, the volatile matter content was notably higher at 71.84%, indicating easier ignition. Further, elemental analysis revealed that the major elements in MSW were carbon and oxygen, 53% and 37%, respectively, with small traces of heavy metals with an average of 0.02% cadmium (Cd) and 0.006% lead (Pb). Moreover, field emission scanning electron microscopy (FESEM) micrographs provided confirmation that the majority of components in the MSW exhibited either partial or complete degradation, resulting in a rough surface texture. In addition, the presence of silica and other silicate groups was also detected. Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the main functional groups were alcohol. In the X-ray diffraction (XRD) analysis, all the major mineral phases were detected between 20 and 30° 2θ, except for the peaks at 50-60° 2θ in S3 and S9 where catalysts such as zeolite Y and zeolite X were detected. Overall, the MSW had low moisture content but higher calorific value, making it a viable feedstock.


Assuntos
Resíduos Sólidos , Zeolitas , Espectroscopia de Infravermelho com Transformada de Fourier , Monitoramento Ambiental , Índia , Carbono , Microscopia Eletrônica de Varredura
3.
Crit Rev Biotechnol ; : 1-18, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566484

RESUMO

Global population growth and demographic restructuring are driving the food and agriculture sectors to provide greater quantities and varieties of food, of which protein resources are particularly important. Traditional animal-source proteins are becoming increasingly difficult to meet the demand of the current consumer market, and the search for alternative protein sources is urgent. Microbial proteins are biomass obtained from nonpathogenic single-celled organisms, such as bacteria, fungi, and microalgae. They contain large amounts of proteins and essential amino acids as well as a variety of other nutritive substances, which are considered to be promising sustainable alternatives to traditional proteins. In this review, typical approaches to microbial protein synthesis processes were highlighted and the characteristics and applications of different types of microbial proteins were described. Bacteria, fungi, and microalgae can be individually or co-cultured to obtain protein-rich biomass using starch-based raw materials, organic wastes, and one-carbon compounds as fermentation substrates. Microbial proteins have been gradually used in practical applications as foods, nutritional supplements, flavor modifiers, and animal feeds. However, further development and application of microbial proteins require more advanced biotechnological support, screening of good strains, and safety considerations. This review contributes to accelerating the practical application of microbial proteins as a promising alternative protein resource and provides a sustainable solution to the food crisis facing the world.

4.
Chemosphere ; 357: 142007, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631497

RESUMO

For energy recovery, anaerobic digestion is applied to organic waste, such as livestock manure (LM) and food wastewater (FW). Digested sludge(DS), a residue from the anaerobic co-digestion of LM and FW, is another type of organic waste that can be converted into energy through pyrolysis. This study compared the pyrolysis characteristics of LM, FW, and DS. The product content varied with the pyrolysis temperature, rate of temperature increase, reaction time, and final reaction temperature. Gas production from FW and DS was similar; however, gas production from LM was low. As the pyrolysis temperature increased, the H2 content increased, and the CO2 content decreased, respectively. At 1000 °C, the H2 content of LM increased to 45%, and FW produced the most gas but the lowest H2 content. The H2/CO ratios of LM and FW ranged from 3.5 to 5.2, while those of DS ranged from 5.5 to 12.4, with the highest values. The carbon conversion rate was the highest for the gaseous products of LM (30-54%) and lowest for the gaseous products of digested sludge (26-36%). Conversely, the cold gas efficiency was the highest for the DS and lowest for the LM. Following anaerobic digestion, the DS generated less tar than the untreated LM and FW, showed higher efficiency in gas generation and gas properties, and exhibited a higher value as a char fuel.

5.
J Hazard Mater ; 471: 134280, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636233

RESUMO

Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.

6.
Materials (Basel) ; 17(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473487

RESUMO

The intensive development of the polyurethanes industry and limited resources (also due to the current geopolitical situation) of the raw materials used so far force the search for new solutions to maintain high economic development. Implementing the principles of a circular economy is an approach aimed at reducing the consumption of natural resources in PU production. This is understood as a method of recovery, including recycling, in which waste is processed into PU, and then re-used and placed on the market in the form of finished sustainable products. The effective use of waste is one of the attributes of the modern economy. Around the world, new ways to process or use recycled materials for polyurethane production are investigated. That is why innovative research is so important, in which development may change the existing thinking about the form of waste recovery. The paper presents the possibilities of recycling waste (such as biochar, bagasse, waste lignin, residual algal cellulose, residual pineapple cellulose, walnut shells, silanized walnut shells, basalt waste, eggshells, chicken feathers, turkey feathers, fiber, fly ash, wood flour, buffing dust, thermoplastic elastomers, thermoplastic polyurethane, ground corncake, Tetra Pak®, coffee grounds, pine seed shells, yerba mate, the bark of Western Red Cedar, coconut husk ash, cuttlebone, glass fibers and mussel shell) as additives or fillers in the formulation of polyurethanes, which can partially or completely replace petrochemical raw materials. Numerous examples of waste applications of one-component polyurethanes have been given. A new unexplored niche for the research on waste recycling for the production of two components has been identified.

7.
Waste Manag ; 178: 155-167, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401429

RESUMO

Aerobic composting stands as a widely-adopted method for treating organic solid waste (OSW), simultaneously producing organic fertilizers and soil amendments. This biologically-driven biochemical reaction process, however, presents challenges due to its complex non-linear metabolism and the heterogeneous nature of the solid medium. These characteristics inherently limit the simulation accuracy and efficiency optimization in aerobic composting. Recently, significant efforts have been made to simulate and control composting process parameters, as well as predicting and optimizing composting product quality. Notably, the integration of machine learning (ML) in aerobic composting of organic waste has garnered considerable attention for its applicability and predictive capability in exploring the complex non-linear relationships of organic waste composting parameters. Despite numerous studies on ML applications in OSW composting, a systematic review of research findings in this field is lacking. This study offers a systematic overview of the application level, current status, and versatility of ML in OSW composting. It spans various aspects, such as compost maturity, environmental pollutants, nutrients, moisture, heat loss, and microbial metabolism. The survey reveals that ML-intervention predominantly focuses on compost maturity and environmental pollutants, followed by nutrients, moisture, heat loss, and microbial activity. The most commonly employed predictive models and optimization algorithms are artificial neural networks (47%) and genetic algorithms (10%). These demonstrate high prediction accuracy and maximize composting efficiency in the simulation and prediction of organic waste composting, alongside regulation of key parameters. Deep neural networks and ensemble learning models prove effective in achieving superior predictive performance by selecting feature variables in compost maturity and pollutant residue prediction of organic waste composting in a simpler and more objective manner.


Assuntos
Compostagem , Poluentes Ambientais , Solo , Resíduos Sólidos/análise , Aprendizado de Máquina
8.
Animals (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338047

RESUMO

This study investigated the effects of substituting fish meal (FM) with black soldier fly (Hermetia illucens) meal (BSM) on the growth performance, body composition, immune response, and antioxidant enzyme activity of juvenile redclaw crayfish (Cherax quadricarinatus). Four isonitrogenous (41%) and isolipidic (11%) diets (i.e., FM substitutes) were formulated from BSM prepared using larvae that were fed soybean meal (BSM-S), fishery byproducts (BSM-F), or pitaya (BSM-P). The experimental diets were fed twice daily to triplicate groups of juvenile redclaw crayfish (0.56 ± 0.04 g). After the feed trial, the FM and BSM-F groups exhibited significantly lower feed conversion ratios and significantly higher weight gain; specific growth rates; and concentrations of saturated fatty acids, highly unsaturated fatty acids, eicosapentaenoic acid, and docosahexaenoic acid in the muscle. Among the tested groups, the BSM-F group exhibited significantly enhanced immune responses and increased antioxidant enzyme activity (i.e., superoxide dismutase, phenoloxidase, and glutathione peroxidase); the BSM-P group exhibited a significantly higher feed intake and hepatopancreatic index; and the FM group exhibited a significantly higher muscle body index and apparent digestibility for the dry matter of crude protein. The findings indicate that the juvenile redclaw crayfish fed BSM-F achieved the highest weight gain among the groups.

9.
Waste Manag ; 176: 1-10, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246072

RESUMO

With continuous advancements in the zero-waste strategy in China, transportation of fresh municipal solid waste to landfills has ceased in most first-tier cities. Consequently, the production of landfill gas has sharply declined because the supply of organic matter has decreased, rendering power generation facilities idle. However, by incorporating liquefied kitchen and food waste (LKFW), sustainable methane production can be achieved while consuming organic wastewater. In this study, LKFW and water (as a control group) were periodically injected into high and low organic wastes, respectively. The biochemical characteristics of the resulting gas and leachate were analyzed. LKFW used in this research generated 19.5-37.6 L of methane per liter in the post-methane production phase, highlighting the effectiveness of LKFW injection in enhancing the methane-producing capacity of the system. The release of H2S was prominent during both the rapid and post-methane production phases, whereas that of NH3 was prominent in the post-methane production phase. As injection continued, the concentrations of chemical oxygen demand, 5-d biological oxygen demand, total organic carbon, ammonia nitrogen, total nitrogen, and oil in the output leachate decreased and eventually reached levels comparable to those in the water injection cases. After nine rounds of injections, the biologically degradable matter of the two LKFW-injected wastes decreased by 8.2 % and 15.1 %, respectively. This study sheds light on determining the organic load, controlling odor, and assessing the biochemical characteristics of leachate during LKFW injection.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos , Eliminação de Resíduos/métodos , 60659 , Alimentos , Reatores Biológicos , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Metano/análise , Água , Nitrogênio
10.
Sci Total Environ ; 913: 169767, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176562

RESUMO

Inadequately managed solid organic waste generation poses a threat to the environment and human health globally. Biotransformation with the black soldier fly larvae (BSFL) is emerging as talent technology for solid waste management. However, there is a lack of understanding of whether BSFL can effectively suppress potential pathogenic microorganisms during management and the underlying mechanisms. In this study, we investigated the temporal variations of microorganisms in two common types of solid waste, i.e., kitchen waste (KW) and pig manure (PM). Natural composting and composting with BSFL under three different pH levels (pH 5, 7, and 9) were established to explore their impact on microbial communities in compost and the gut of BSFL. The results showed that the compost of kitchen waste and pig manure led to an increase in relative abundance of various potentially pathogenic bacteria. Temporal gradient analyses revealed that the most substantial reduction in the relative abundance and diversity of potentially pathogenic microorganisms occurred when the initial pH of both two wastes were adjusted to 7 upon the introduction of BSFL. Through network and pls-pm analysis, it was discovered that the gut microbiota of BSFL occupied an ecological niche in the compost, inhibiting the proliferation of potentially pathogenic microorganisms. This study has revealed the potential of BSFL in reducing public health risks during the solid waste management process, providing robust support for sustainable waste management.


Assuntos
Compostagem , Dípteros , Humanos , Animais , Suínos , Larva/fisiologia , Resíduos Sólidos , Esterco , Dípteros/fisiologia
11.
Environ Res ; 244: 117422, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866529

RESUMO

The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.


Assuntos
Reatores Biológicos , Ácido Succínico , Fermentação , Compostos Orgânicos , Tecnologia
12.
Environ Pollut ; 342: 123125, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081379

RESUMO

Composting is a traditional method of treating organic waste. A growing number of studies have been focusing on accelerating the process to achieve "rapid composting." However, the specific definition and influencing factors of rapid composting remain unclear. Therefore, we aimed to gather more insight into the features of rapid composting by reviewing the literature concerning organic waste composting published in the Web of Science database in the past 5 years. We selected 1615 sample studies with "composting" as the subject word and analyzed the effective composting time stated in each study. We defined rapid composting within 15 days using the median test and quartile method. Based on this definition, we summarized the influencing factors of "rapid composting," namely materials, reactors, temperature, and microorganisms. Finally, we summarized two mechanisms related to humus formation during organic waste rapid composting: high temperature-promoting maturation and microbial driving mechanisms. This literature review compiled useful references to help promote the development of rapid composting technology and related equipment.


Assuntos
Compostagem , Solo , Temperatura
13.
J Environ Manage ; 351: 119822, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134504

RESUMO

Urban sewage sludge (SL) is a major concern due to the number of environmental problems it causes. Its application for different purposes is strictly regulated, limiting the possibilities of recycling and reusing this material. Thus, in this work, a complete study of a simple method to convert SL into activated carbon (AC) was carried out. The comprehensive study involves an evaluation of the main process parameters, such as the activating agent (AA) content (25 %, 33 %, 50 %), using the lowest amount of AA as novelty, different pyrolysis temperatures (600 and 800 °C), and purification conditions (6 M HCl:AC ratio, v:w). Under controlled and optimised conditions and through a single combined activation and pyrolysis step followed by acid purification, ACs with well-developed porosity can be obtained. Surface area values of around 870 m2/g and over 60 % carbon content were achieved, demonstrating that the prepared ACs could have applications in a wide variety of fields as high-value products. As an innovative aspect in this research, the gases streams and liquid effluents generated during the global process were analysed, achieving elimination of over 63 % of the concentration of the chemical elements contained in the SL during the chemical purification stage. Finally, mass, energy, and economic balances were carried out to estimate the production cost of AC derived from SL (<€ 8/kg AC).


Assuntos
Carvão Vegetal , Esgotos , Esgotos/química , Porosidade , Carvão Vegetal/química , Gases , Reciclagem
14.
Bioresour Technol ; 394: 130198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103751

RESUMO

Anaerobic co-digestion of fat-oil-grease (FOG) and food waste (FW) with sewage sludge (SS) in wastewater treatment plants is a method used to increase biogas production. In this study, digestion scenarios were compared using plant-wide modeling and life cycle assessment: Scenario-0 (mono-digestion of waste-activated sludge (WAS)), Scenario-1 (co-digestion of WAS with FOG), and Scenario-2 (co-digestion of WAS with FW). Scenario-0, with the highest energy use and landfilling of FOG/FW, has the worst environmental impact. Scenario-1 and Scenario-2 minimize the environmental load by energy recovery and avoiding landfilling of organic waste. Scenario-wise, the change in greenhouse gas (GHG) emissions from treatment was negligible. However, due to the impact of landfilling, GHG emissions in Scenario-0 were 21% and 30% higher than in Scenario-1 and 2, respectively. The environmental benefit of anaerobic co-digestion of FOG/FW with SS is not only in the contribution to energy production but also in the recycling of organic waste.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Animais , Esgotos , 60659 , Alimentos , Metano/análise , Hidrocarbonetos , Biocombustíveis/análise , Estágios do Ciclo de Vida , Digestão , Anaerobiose , Reatores Biológicos
15.
Environ Res ; 244: 117949, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109961

RESUMO

Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.


Assuntos
Compostagem , Plásticos , Humanos , Biopolímeros/química , Tecnologia , Resíduos Industriais
16.
Environ Sci Pollut Res Int ; 31(1): 1664-1673, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097845

RESUMO

The subject of the research was the recovery of raw materials from waste generated in the production of cable insulation and the management of aluminum sludge. It was found that 49% (w/w) acetophenone, 6.8% (w/w) α-methylstyrene, and 17.2% (w/w) cumyl alcohol can be recovered from waste with a loss on ignition of 95% and used in various industries. A gas chromatograph equipped with a mass spectrometry detector was used to identify the recovered compounds. A waste distillation process was proposed to remove the water layer and obtain a concentrated acetophenone fraction. A method of neutralizing the water fraction and distillation residues is presented. The proposed waste management method is an alternative method to the currently used thermal transformation method. In turn, aluminum sludge was used to produce aluminum sulfate, which was used in the plant's sewage treatment plant as a coagulant. The effect of this action was a reduction of 67% in the content of total iron, 60% of trivalent iron, and 32% of chemical oxygen demand. The above-mentioned examples of waste management are part of a closed-loop waste management strategy.


Assuntos
Esgotos , Gerenciamento de Resíduos , Esgotos/química , Alumínio/química , Cromatografia Gasosa-Espectrometria de Massas , Água , Ferro , Acetofenonas , Eliminação de Resíduos Líquidos/métodos
17.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959500

RESUMO

In the wake of economic and population growth, increased wastewater production poses a challenge related to sewage sludge treatment, which is problematic given its high moisture content, amount, and hazardous characteristics. This study focuses on the hydrothermal carbonization of sewage sludge to produce carbonous material-hydrochar, which may be an alternative to fossil fuels. The effect of process parameters, namely, temperature (180, 240, 300 °C) and duration time (30, 90, 180 min), on hydrochar properties (proximate and ultimate analysis, heating values) and process performance were studied. Obtained results indicate and confirm that hydrothermal carbonization, especially temperature increase, improves the fuel properties of carbonized sewage sludge. The highest low heating value was obtained for hydrochar derived at 300 °C in 180 min (~23 MJ × kg-1). The highest energy gain was noted for hydrochar derived at 240 °C in 180 min (~23%). As well as relatively high mass and energy yield in comparison to other hydrochars, these parameters are considered the most favorable for sewage sludge hydrothermal carbonization. However, high energy consumption (over 1300 kJ × g-1) suggests that more research on the process's economical efficacy is required.

18.
J Environ Manage ; 348: 119378, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883833

RESUMO

With the development of fermentation technology and the improvement of efficiency, anaerobic digestion (AD) has been playing an increasingly primary role in waste treatment and resource recovery. Temperature is undoubtedly the most important factor because it shapes microbial habitats, changes the composition of the microbial community structure, and even affects the expression of related functional genes. More than half of the biosphere is in a long-term or seasonal low-temperature environment (<20 °C), which makes psychrophilic AD have broad application prospects. Therefore, this review discusses the influencing factors and enhancement strategies of psychrophilic AD, which may provide a corresponding reference for future research on low-temperature fermentation. First, the occurrence of AD has been discussed. Then, the adaptation of microorganisms to the low-temperature environment was analyzed. Moreover, the challenges of psychrophilic AD have been reviewed. Meanwhile, the strategies for improving psychrophilic AD are presented. Further, from technology to application, the current situation of psychrophilic AD in pilot-scale tests is described. Finally, the economic and environmental feasibility of psychrophilic AD has been highlighted. In summary, psychrophilic AD is technically feasible, while economic analysis shows that the output benefits cannot fully cover the input costs, and the large-scale practical application of psychrophilic AD is still in its infancy. More research should focus on how to improve fermentation efficiency and reduce the investment cost of psychrophilic AD.


Assuntos
Reatores Biológicos , Temperatura Baixa , Anaerobiose , Fermentação , Temperatura , Metano
19.
Bioengineered ; 14(1): 2252191, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37712696

RESUMO

A recently strategy applied to anaerobic digestion (AD) is the use of biochar (BC) obtained from the pyrolysis of different organic waste. The PRISMA protocol-based review of the most recent literature data from 2011-2022 was used in this study. The review focuses on research papers from Scopus® and Web of Knowledge®. The review protocol used permits to identify 169 articles. The review indicated a need for further research in the following challenges on the application of BC in AD: i) to increase the use of BC in developing countries, which produce large and diverse amounts of waste that are the source of production of this additive; ii) to determine the effect of BC on the AD of organic waste under psychrophilic conditions; iii) to apply tools of machine learning or robust models that allow the process optimization; iv) to perform studies that include life cycle and technical-economic analysis that allow identifying the potential of applying BC in AD in large-scale systems; v) to study the effects of BC on the agronomic characteristics of the digestate once it is applied to the soil and vi) finally, it is necessary to deepen in the effect of BC on the dynamics of nitrogen and microbial consortia that affect AD, considering the type of BC used. In the future, it is necessary to search for new solutions in terms of the transport phenomena that occurs in AD with the use of BC using robust and precise mathematical models at full-scale conditions.


Assuntos
Agricultura , Aprendizado de Máquina , Anaerobiose , Consórcios Microbianos
20.
J Environ Manage ; 347: 118993, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751665

RESUMO

Anaerobic digestion (AD) as a waste management strategy for the organic fraction of municipal waste (OFMSW) has received attention in developed countries for several decades, leading to the development of large-scale plants. In contrast, AD of OFMSW has only recently drawn attention in developing countries. This systematic review was carried out to investigate the implementation of AD to treat the OFMSW in developing countries, focusing on assessing pilot and full-scale AD plants reported in the last ten years. Studies that met the selection criteria were analyzed and data regarding operating parameters, feedstock characteristics, and biogas, digestate, and energy production were extracted. As outlined in this systematic review, AD plants located in developing countries are mostly one-stage mesophilic systems that treat OFMSW via mono-digestion, almost exclusively with the aim of producing electrical energy. Based on the analysis done throughout this systematic review, it was noted that there is a large difference in the maturity level of AD systems between developing and developed countries, mainly due to the economic capacity of developed countries to invest in sustainable waste management systems. However, the number of AD plants reported in scientific papers is significantly lower than the number of installed AD systems. Research articles regarding large-scale implementation of AD to treat OFMSW in developed countries were analyzed and compared with developing countries. This comparison identified practices used in plants in developed countries that could be utilized in the large-scale implementation and success of AD in developing countries. These practices include exploiting potential products with high market-values, forming partnerships with local industries to use industrial wastes as co-substrates, and exploring different biological and physical pretreatment technologies. Additionally, the analysis of capital and operational costs of AD plants showed that costs tend to be higher for developing countries due to their need to import of materials and equipment from developed countries. Technical, economical, and political challenges for the implementation of AD at a large-scale in developing countries are highlighted.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Resíduos Sólidos/análise , Anaerobiose , Países em Desenvolvimento , Reatores Biológicos , Biocombustíveis/análise , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...